无码日韩精品一区二区三区浪潮_99国产精品久久久久9999高清_亚洲熟妇无码久久观看_亚洲a∨无码一区二区猫咪

微信掃碼登錄

其他登錄方式

綁定手機號

注冊

忘記密碼

用戶協(xié)議

綁定手機號

近期有不法分子打著愛盈利的旗號,制作“愛盈利”名稱的App,并偽造愛盈利證件,騙取用戶信任,以抖音點贊賺錢或其他方式賺錢為名義,過程中以升級會員獲得高傭金為名讓用戶充值。
愛盈利公司鄭重聲明:我司沒有研發(fā)或運營過任何名為“愛盈利”的APP,我司做任務(wù)賺錢類產(chǎn)品從沒有讓任何普通用戶充值升級會員。我公司產(chǎn)品均在本網(wǎng)站可查詢,請將網(wǎng)站拉至底部,點擊“關(guān)于我們”可查看愛盈利相關(guān)產(chǎn)品與服務(wù)。
溫馨提示:當遇到此類問題請撥打官方電話或添加官方微信,以免財產(chǎn)損失。愛盈利官網(wǎng)地址:www.jza6.com。
  • 推廣與合作
X

循序漸進的增長黑客指南:如何提高用戶留存(數(shù)據(jù)分析篇)

來源:人人都是產(chǎn)品經(jīng)理 297651

在用戶留存率低迷的情況下,仍然投入巨額預算去拉新/獲客,那么你其實就只是在租用流量而已。既然如此,那我們要如何去提高用戶留存?

循序漸進的增長黑客指南:如何提高用戶留存(數(shù)據(jù)分析篇)

在上一文《循序漸進的增長黑客指南:如何提高用戶注冊轉(zhuǎn)化與用戶激活》中,我們已經(jīng)分享了如何從“目標用戶-文案內(nèi)容-渠道選擇-落地轉(zhuǎn)化”這個漏斗中去提高用戶注冊轉(zhuǎn)化率。那么在用戶完成注冊轉(zhuǎn)化之后,增長黑客的工作就是盡量去留住用戶——用戶留存率高,用戶生命周期長,用戶生命周期價值就高。

我在《AARRR已是過去式,而RARRA才是更好的增長黑客模型》一文中提過,注重用戶增長的AARRR模型已經(jīng)失去了實際意義——2007年McClure提出“海盜指標-AARRR模型”時獲客成本(Customer Acquisition Costs, CAC)還很低,所以AARRR模型強調(diào)“獲客/用戶拉新(Acquisition)指標”是首要指標。

但是今天,市場情況已經(jīng)完全不同了。你去看現(xiàn)在各大廣告/社交渠道的流量價格,獲客成本CAC已經(jīng)高到離譜,市場情況和2007年已經(jīng)完全不同。所以如果到現(xiàn)在這個發(fā)展階段了,首要任務(wù)還在強調(diào)獲客,我覺得是不合適的。

所以我們需要一個更好的增長黑客模型,那個模型就是RARRA模型。

循序漸進的增長黑客指南:如何提高用戶留存(數(shù)據(jù)分析篇)

RARRA模型

而在RARRA模型中,用戶留存Retention是最被關(guān)注的要素——因為用戶留存率能夠真正反映產(chǎn)品的價值。正如我所一直強調(diào)的那樣,如果你在用戶留存率低迷的情況下仍然投入巨額預算去拉新/獲客,那么你其實就只是在租用流量而已,這根本就算不上是真正的獲客,因為不管你拉新多少新用戶,他們最終都流失了。

那么應(yīng)該如何提高用戶留存率?

我先潑盆冷水,提高用戶留存絕對不是簡單的教你幾招武術(shù)招式,而是靠數(shù)據(jù)去分析并驅(qū)動的。所以在我們采取一系列運營行為試圖去提高用戶留存之前,需要先進行用戶留存分析和群組分析,需要搞清楚用戶留存率有多少、用戶是在什么節(jié)點流失的以及為什么用戶流失,這是你做出所有運營干預的基礎(chǔ),然后我們再有的放矢地進行優(yōu)化實驗,否則就是無用功。

搞清楚這三個問題,至關(guān)重要:

  1. 用戶N天留存率是多少?

  2. 用戶是什么時候流失的?

  3. 用戶是什么留存節(jié)點流失的?

要分析用戶留存率,我們可以嘗試群組分析Cohort Analysis。

什么是群組分析Cohort Analysis?

群組分析Cohort Analysis是指你根據(jù)用戶來源或用戶行為對用戶進行分組,以了解他們在你產(chǎn)品上的留存情況。群組分析Cohort Analysis我們一般主要分為兩類:

  • 獲客群組Acquisition Cohorts:是指在用戶首次注冊產(chǎn)品時對用戶進行劃分,可以按照獲客日期或者獲客渠道來源劃分。

  • 行為群組Behavioral Cohorts:是根據(jù)用戶在在你的產(chǎn)品中采取的行為軌跡來劃分。這些行為可以是應(yīng)用啟動、應(yīng)用卸載、商品交易等任何行為事件。

如何運用獲客群組分析,我們可以來看一個例子:

循序漸進的增長黑客指南:如何提高用戶留存(數(shù)據(jù)分析篇)

示例1:獲客群組-按照獲客渠道劃分-用戶留存率

示例1所示的是按照不同的獲客渠道所劃分的獲客群組Acquisition Cohorts,你可以從表中分析周留存,即7日留存情況:

  • 搜索引擎自然流量(Organic Search);

  • 直接輸入網(wǎng)址訪問(Direct);

  • 引薦流量(Referral)貼吧、友鏈等;

  • 社交媒體(Social);

  • 搜索引擎競價流量(Paid Search);

  • 電子郵件(Email)。

獲客渠道群組分析Acquisition Cohorts有什么作用?

你可以通過比較不同的用戶來源,然后篩選出最優(yōu)質(zhì)的渠道。

比如,你可以在上表中分析發(fā)現(xiàn):通過搜索引擎自然流量(Organic Search)來源的用戶最多(可能是SEO優(yōu)化做得最好),但是它的周留存率是很低的。但是通過直接輸入網(wǎng)址訪問(Direct))的用戶數(shù)量雖然沒有搜索引擎自然流量(Organic Search)來的多,但是周留存率是最高的(可能對產(chǎn)品已經(jīng)產(chǎn)生了品牌信賴)。

而通過電子郵件(Email)來的用戶雖然不多,但是周留存率是比較高的,后期可以在這個渠道加大營銷投入。相反,通過搜索引擎競價流量(Paid Search)來的用戶,不光是數(shù)量少,而且留存率也最低。

所以你后期在調(diào)整營銷戰(zhàn)略的時候,可以縮減搜索引擎關(guān)鍵詞競價預算,轉(zhuǎn)而把經(jīng)費投入到電子郵件營銷當中去,或者打磨產(chǎn)品兩點,增加直接輸入網(wǎng)址訪問(Direct))的用戶粘性和留存。

我們再來看一個例子:

循序漸進的增長黑客指南:如何提高用戶留存(數(shù)據(jù)分析篇)

示例2:獲客群組-按照獲客日期劃分-用戶留存率

示例2是按照獲客日期劃分的獲客群組Acquisition Cohorts,你可以從表中分析:

  • 1月25日(Day0)的新用戶共1098人,Day1留存率是33.9%,Day2留存率是23.5%,Day3留存率是18.7%……Day7留存率是14.5%……Day10留存率是12.1%,也就是說1月25日共1098名新用戶的到第10天的留存率是12.1%,只剩下132人,用戶流失率高達87.9%;

  • 1月26日(Day0)的新用戶共1358人,Day1留存率是31.1%,Day2留存率是18.6%……Day9留存率是11.3%,用戶留存率高達88.7%,1358人只剩下153人;

  • 你可以根據(jù)此表格,繼續(xù)分析不同獲客日期的每日用戶留存率……

獲客日期群組分析Acquisition Cohorts有什么作用?

這張圖表能夠明確的告訴我們Day1的用戶流失率是最高的,從1月25日到2月3日共計13487名新用戶(Day0)到了Day1平均留存率僅僅才27%,也就是說13487人在Day1當天就只剩下3641人了,剩下的9846人全部離開了,用戶流失率高達73%。

所以你已經(jīng)明白了——用戶在第一天的流失情況最嚴重,至于用戶流失的原因,你不知道。因為獲客群組分析只會告訴你用戶在第幾天流失了,但不會告訴你具體流失的原因以及具體的流失節(jié)點。

所以我們需要運用用戶行為群組分析,來洞察用戶流失的原因和具體流失的節(jié)點。

我們可以來看一個例子:

循序漸進的增長黑客指南:如何提高用戶留存(數(shù)據(jù)分析篇)

示例3:用戶行為群組-用戶引導Onboarding-用戶留存率

通過上圖,我們選擇了用戶引導(Onboarding)作為觀察項,看看用戶在完成用戶引導(Onboarding)之后的留存情況。仔細觀察會發(fā)現(xiàn)最大的流失率是在Day1,平均留存率都是23%-27%之間,那意味著完成用戶引導Onboarding之后,流失率竟然高達73%以上!

那么這就表明了用戶引導Onboarding出了問題,我們需要完善Onboarding用戶引導,告訴用戶我們的產(chǎn)品價值、產(chǎn)品功能等等。

用戶行為群組分析Behavioral Cohorts有什么作用?

它可以告訴我們用戶為什么流失以及用戶具體流失的節(jié)點,用戶行為群組分析Behavioral Cohorts和獲客渠道群組分析Acquisition Cohorts是相輔相成的。

如果說用戶行為群組分析(Behavioral Cohorts)不太便于理解,那么漏斗分析模型就更能直觀地表現(xiàn)用戶的流失情況,而且會將用戶流失的情況更為具象化,我們舉個例子:

循序漸進的增長黑客指南:如何提高用戶留存(數(shù)據(jù)分析篇)

示例4:漏斗模型-用戶引導Onboarding-用戶流失率

從示例4中,有多少新用戶成功地完成了所有引導頁流程?

我們來分析整個漏斗的完整流程:下載安裝—登錄App—引導頁1—引導頁2—引導頁3—完成用戶引導Onboarding

我們分析這個漏斗模型的結(jié)果是——大多數(shù)用戶在從引導頁2進到引導頁3階段放棄了,最終完成整個用戶引導Onboarding的只有30%的用戶。

這個漏斗分析模型有說明作用?

這個漏斗分析模型告訴我們——用戶之所以流失嚴重,是因為Onboarding頁面出了問題,而且是Onboarding頁面3出了問題。

那么我們應(yīng)該如何完善?

用戶引導頁面Onboarding Pages對于產(chǎn)品是非常重要的,首先它是對產(chǎn)品主要功能的描述,其次是向用戶傳遞產(chǎn)品的價值,再次是幫助用戶更好地使用產(chǎn)品。所以如果引導頁面Onboarding Pages不吸引人,那么用戶的好感度就會下降,建議做文案上或者視覺設(shè)計上的A/B測試,然后再次試驗、分析、調(diào)整。

以上只是舉例說明用戶行為群組分析和漏斗模型分析需要結(jié)合著使用,這樣能夠幫助你更加清楚直觀的分析用戶流失的時間以及用戶的流失節(jié)點。

所以通過以上的三點:

  1. 獲客渠道群組分析Acquisition Cohorts;

  2. 用戶行為群組分析Behavioral Cohorts;

  3. 用戶漏斗模型分析Funnel Analysis。

我們就能夠知道:

  • 用戶N天留存率是多少?

  • 用戶是什么時候流失的?

  • 用戶是什么留存節(jié)點流失的?

那么我們接下來要做的,就是針對具體的問題,去針對性的、有的放矢地運營,才能真正提高用戶留存。

數(shù)據(jù)驅(qū)動增長是真正的關(guān)鍵所在。

作者:席文奕,蝌蚪互娛聯(lián)合創(chuàng)始人,關(guān)注SaaS行業(yè)應(yīng)用、大數(shù)據(jù)分析及業(yè)務(wù)增長

文章來源:人人都是產(chǎn)品經(jīng)理

【轉(zhuǎn)載說明】   若上述素材出現(xiàn)侵權(quán),請及時聯(lián)系我們刪除及進行處理:[email protected]

評論

相關(guān)文章推薦

SELECT dw_posts.ID,dw_posts.post_title,dw_posts.post_content FROM dw_posts INNER JOIN dw_term_relationships ON (dw_posts.ID = dw_term_relationships.object_id) WHERE 1=1 AND dw_posts.ID not in (221540) AND(dw_term_relationships.term_taxonomy_id = 410 ) AND dw_posts.post_type = 'post' AND (dw_posts.post_status = 'publish') GROUP BY dw_posts.ID ORDER BY RAND() LIMIT 0, 5

京ICP備15063977號-2 ? 2012-2018 aiyingli.com. All Rights Reserved. 京公網(wǎng)安備 11010102003938號